Project Title	Funding	Strategic Plan Objective	Institution
Primate models of autism	\$734,756	Q2.S.A	University of California, Davis
A mitochondrial etiology of autism	\$657,793	Q2.S.A	Children's Hospital of Philadelphia
EFRI- BSBA: Novel microsystems for manipulation and analysis of immune cells	\$524,890	Q2.S.A	University of California, Davis
Neuroimmunologic investigations of autism spectrum disorders (ASD)	\$385,337	Q2.S.F	National Institutes of Health
Maternal immune activation, cytokines, and the pathogenesis of autism	\$382,588	Q2.S.A	University of California, Davis
Prostaglandins and cerebellum development	\$375,000	Q2.S.A	University of Maryland, Baltimore
non-human primate autism model based on maternal infection	\$335,155	Q2.S.A	California Institute of Technology
An ex-vivo placental perfusion system to study materno- etal biology	\$243,000	Q2.S.A	University of Southern California
CNS toxicity of ambient air pollution: Postnatal exposure o ultrafine particles	\$191,406	Q2.S.A	University of Rochester
Project 2: Immunological susceptibility of autism	\$173,585	Q2.S.A	University of California, Davis
A primate model of gut, immune, and CNS response to childhood vaccines	\$155,086	Q2.S.A	University of Washington
Maternal infection and autism: Impact of placental sufficiency and maternal inflammatory responses on etal brain development	\$127,500	Q2.S.A	Stanford University
nfluence of the maternal immune response on the development of autism	\$127,499	Q2.S.A	University of Medicine & Dentistry of New Jersey
Primate models of autism	\$114,105	Q2.S.A	University of California, Davis
A non-human primate autism model based on maternal mmune activation	\$114,105	Q2.S.A	University of California, Davis
Regulation of inflammatory Th17 cells in autism spectrum disorder	\$112,500	Q2.S.A	New York University School of Medicine
nfluence of maternal cytokines during pregnancy on effector and regulatory T helper cells as etiological actors in autism	\$93,500	Q2.S.A	University of Medicine & Dentistry of New Jersey
The pathogenesis of autism: Maternal antibody exposure in the fetal brain	\$90,173	Q2.S.A	The Feinstein Institute for Medical Research
Gene-environment interactions in the pathogenesis of autism-like neurodevelopmental damage: A mouse model	\$60,000	Q2.S.A	Johns Hopkins University School of Medicine
s autism a mitochondrial disease?	\$60,000	Q2.S.A	University of California, Davis
Study of anti-neuronal autoantibodies in behavioral and novement disorders	\$48,000	Q2.S.A	University of Oklahoma Health Sciences Center
Early biologic markers for autism	\$43,308	Q2.S.A	Kaiser Permanente Division of Research
Does mercury and neurotension induce mitochondrial DNA release from human mast cells and contribute to auto-immunity in ASD?	\$40,000	Q2.S.A	Tufts University

Project Title	Funding	Strategic Plan Objective	Institution	
How does IL-6 mediate the development of autism-related behaviors?	\$28,000	Q2.S.A California Institute of Technology		
Influence of oxidative stress on transcription and alternative splicing of methionine synthase in autism	\$28,000	Q2.S.A	Northeastern University	
A role for immune molecules in cortical connectivity: Potential implications for autism	\$28,000	Q2.S.A	University of California, Davis	
Th cell polarization and candida reactivity in autistic children with food allergy	\$25,000	Q2.S.E	University of Medicine & Dentistry of New Jersey	
Environmentally induced oxidative stress and altered local brain thyroid horomone metabolism: relevance to autism?	\$25,000	Q2.S.A	Harvard Medical School; Brigham and Women's Hospita	
Influence of maternal cytokines on activation of the innate immune system as a factor in the development of autism	\$24,000	Q2.S.A	University of Medicine & Dentistry of New Jersey	
Molecular pathways involved in oxidative stress and leaky gut impairment in autism spectrum disorders	\$20,000	Q2.S.A	University of Naples	
Neurological diseases due to inborn errors of metabolism	\$10,458	Q2.S.A	University of Texas Southwestern Medical Center	
The effect of mercury and neuropeptide triggers on human mast cell release of neurotoxic molecules	\$5,000	Q2.S.A	Tufts University	
Review of the literature on selenocysteine metabolism and selenoproteins in autism	\$3,000	Q2.Other	Northeastern University School of Pharmacy	
Immune molecules and cortical synaptogenesis: Possible implications for the pathogenesis of autism	\$0	Q2.S.A	University of California, Davis	
Consequences of maternal antigen exposure on offspring immunity: An animal model of vertical tolerance	\$0	Q2.S.A	The Fox Chase Cancer Center	
Mechanisms of mitochondrial dysfunction in autism	\$0	Q2.S.A	Georgia State University	
Redox abnormalities as a vulnerability phenotype for autism and related alterations in CNS development	\$0	Q2.S.A	State University of New York at Potsdam	
Redox abnormalities as a vulnerability phenotype for autism and related alterations in CNS development	\$0	Q2.S.A	Arkansas Children's Hospital Research Institute	
Redox abnormalities as a vulnerability phenotype for autism and related alterations in CNS development	\$0	Q2.S.A	University of Rochester	
Systematic characterization of the immune response to gluten and casein in autism spectrum disorders	\$0	Q2.S.A	Weill Cornell Medical College	